IDECool 6


The IDEcool6 is a next-generation two-stage evaporative cooling Equipment. It uses a unique ,energy efficient  two stage process to cool air. Indirect Evaporative Cooling (sensible cooling – no moisture addition), followed by Direct Evaporative Cooling (adiabatic cooling). This enables the IDEcOOL to deliver cool air at sufficiently reduced dry Bulb temperature and low moisture level. It  is an excellent upgrade over  conventional air washers . The IDeCOOL is also an energy-efficient and natural air conditioning  alternative to conventional air conditioners



IDECool 6, Indirect Evaporative Cooler | Innovative Technology for Home–s Evapoler

DAMA: The core technology of  IDEcool is the next-generation DAMA heat exchanger. DAMA stands for ’Dry Air and Moist Air’. The DAMA heat exchanger is a cross-flow, plate-type polymeric exchanger. Warm, primary air flows in enclosed channels and gives up its heat to water films flowing down the other side of the polymeric plates. A secondary air stream flowing in the direction opposite to the water, evaporates water before it is exhausted outside. Thus, the primary air is cooled without any moisture addition.

Features/ Benefits

  • No moisture added during stage 1(sensible cooling stage).Hence,works Better  during rainy weather.
  • IDEC Technology delivers 5 Deg.C more Cooling and adds 60% less moisture than DEC.
  • Provides comfort in all weather conditions
  • Area Cooled:1000-1200 Sq. Ft.
  • 30-40% less air required to cool .A direct saving in ducting cost.
  • Provides positive pressure and dust-free environment
  • 40-60 percent lower energy consumption as compared to conventional air conditioning systems
  • 100 percent fresh, clean, cool air
  • Creates more comfortable conditions for employees and processes
  • Eco-friendly: no CFCs (chlorofluorocarbons) involved, thus helping reduce GHGs (greenhouse gases); zero ODP (Ozone Depletion Potential)
  • An excellent upgrade over Air washer and Ventillation Systems.
  • Increased productivity of employees
  • Prevents solvent evaporation under controlled temperature conditions in print and packaging industry and in paint shops
  • Excellent Indoor Air Quality (IAQ) and no Sick Building Syndrome (SBS)

Specification of IDECool 6

Description Details
Make and Origin A.T.E. Enterprises(BU:HMX), Bangalore India
Model- Type IDECool 6
Construction Single Skin, AHU type box with extruded aluminum structure and GI
base frame.
Air flow Machine Outlet- in CFM/CMH 6000 / 10140
Area cooled (sq feet) 1000 – 1200
Available external static pressure in mm of Wg 10
Type of Blower Backward Curve belt driven fan
Blower motor connected load kW 2.2 kW
Blower motor consumption load kW 2.1 kW
Filtration HDPE mesh of 60microns will be used behind the Louvers
Pump 2 nos. submersible, 50watts single phase pump.
Dimensions W x L x H (mm) 1200x2200x(1800+150)
Unit operating Weight in Kg 500
Power supply Three Phase 415V,50Hz.with connected load of 2.3 kW.
Controller Microcontroller with corded remote controller (20 m wire length)
RH control available Yes manual RH control available
Additional features available on request.
Single phase power supply Available on request
Variable frequency drive.
Auto drain system.
Differential pressure for air filters
Auto bleed-off facility
UV unit for tank water


Payback Period

TYPE IDECOOL 6 Air Conditioner
Capacity 6000 CFM 1 TON
Power 2.2 kW 1.0 Kw
Covered Area 1200 sqft 1200 sqft
Air Changes Per Hour 30 30
No. of Machine Required 1 10
Total kW 2.2 10
Electricity Unit Consumption per year (10 hrs, 300 days) 6600 kw 30,000 kw
Total Electricity Cost (in Rs.)(Assuming Rate @ Rs 8/Unit) Rs. 52,800/- Rs.2,40,000/-
Saving on Electricity Cost per year ( in Rs.) Rs. 1,87,200/- Nil
Saving (%) 78% NIL

Evaporative Cooling Types

Direct evaporative cooling (Single Stage Cooling)

With direct evaporative cooling, outside air is blown through a water-saturated medium (usually cellulose -Honey comb cooling pads) and cooled by evaporation. The cooled air is circulated by a blower.

Direct evaporative cooling adds moisture to the air stream until the air stream is close to saturation. The dry bulb temperature* is reduced, while the wet bulb temperature** stays the same.

*dry bulb: Sensible air temperature (as measured by a Thermometer).
**wet bulb: The lowest air temperature achievable by evaporative Air Cooilng System.

Indirect evaporative cooling

In Indirect evaporative cooling Hot Air and water travel in different channels and do not come directly in contact with each other ,hence the name Indirect Evaporative Cooilng.

 In IEC, warm primary air cools by losing its heat to a thin water film on the other side of a conducting surface. Another air stream called Secondary or Scavenging air moves upward through falling water and  evaporates this water, thereby, converting most of the sensible heat into latent heat, before it is exhausted to the outside. Thus, the primary air is cooled without coming in contact with the water stream. Hence, IEC reduces the dry bulb temperature, wet-bulb temperature and the enthalpy of the primary air without adding any moisture to it.

Indirect-direct evaporative cooling ( Two Stage Cooling )

In Indirect Evaporative cooling the primary air is cooled without coming in contact with  water .Hence in first stage air is cooled without adding any moisture to it and then cooled further in the second stage  with direct evaporative cooling process  with extra  reduction  of 5

Temperature reduction achievable using indirect/direct evaporative cooling

First calculate the dry bulb and wet bulb temperatures achievable with indirect evaporative cooling:
1. Temp drop achievable = (dry bulb – wet bulb ) x (efficiency of indirect module)
     Example: (42 degrees C- 23.5degrees C) x .7 = 13 degreesC
2. Achievable temp = dry bulb – temp drop achievable
     Example: 42 degrees – 13 degrees = 29 degrees DB/19.5 degrees WB
3. Starting DB: 42 degrees
     Ending DB: 29 degrees

Then use the dry bulb/wet bulb values from step 3 to calculate the dry bulb/wet bulb temperatures achievable with direct evaporative cooling:
4. Temp drop achievable: (dry bulb – wet bulb ) x (efficiency of the media)
    Example: (29 degrees – 19.5 degrees) x .9 = 8.6 degreesC
5. Achievable temp = dry bulb – temp drop achievable
    Example: 29 degrees – 8.6 degrees = 20.4 degrees DB/19.5 degrees WB
6. Total temperature reduction using indirect/direct evaporative cooling:
     Starting DB: 42 degrees C
     Ending DB: 20.4 degrees C