IDECool 4

Indirect Evaporative Cooling delivers cooling close to air conditioning. However, Refrigerant based air-conditioning entails higher CAPEX and opex, while conventional evaporative cooling solutions fall short of delivering the desired level of cooling and comfort especially during rainy weather. IDEcOOl4 is energy-efficient and eco-friendly Two-stage cooling solutions, based on innovative & patented indirect evaporative cooling technology.It  is a truly “Make in India “ Product.



DAMA: The core technology of indirect evaporative cooling i.e  IDEcool is the next-generation DAMA heat exchanger. DAMA stands for ’Dry Air and Moist Air’. The DAMA heat exchanger is a cross-flow, plate-type polymeric exchanger. In Indirect Evaporative Cooler technology Warm, primary air flows in enclosed channels and gives up its heat to water films flowing down the other side of the polymeric plates. A secondary air stream flowing in the direction opposite to the water evaporates water before it is exhausted outside. Thus, the primary air is cooled without any moisture addition in the Indirect cooling stage.

Features & Benifits

  •  Indirect Evaporative Cooling does not add moisture in stage 1(sensible cooling stage).Hence,works Better during rainy weather.
  • IDEC Technology delivers 5 Deg.C more Cooling and adds 60% less moisture than DEC.
  • Indirect Evaporative Cooling requires 30-40% less air .
  • Area Cooled:800-1000 Sq. Ft.
  • A Make in India Product
  • Provides positive pressure and dust-free environment
  • Indirect Evaporative Cooler require 40-60 percent lower energy consumption as compared to conventional air conditioning systems
  • 100 percent fresh, clean, cool air
  • Creates more comfortable conditions for employees and processes
  • Eco-friendly: no CFCs (chlorofluorocarbons) involved, thus helping reduce GHGs (greenhouse gases); zero ODP (Ozone Depletion Potential)
  • Lower supply air temperatures with much lower addition of moisture to the supply air as compared to air washers
  • Increased productivity of employees
  • Prevents solvent evaporation under controlled temperature conditions in print and packaging industry and in paint shops
  • Excellent Indoor Air Quality (IAQ) and no Sick Building Syndrome (SBS)

Specification of IDECool 4

Model- TypeIDECool 4
ConstructionSingle skin 4mm thick Aluminum Composite Panels(ACP) appliance
white, framed in a 30x 30 mm extruded aluminum structure and GI base
Air flow Machine Outlet- in CFM/CMH4000 / 6800
Area cooled (sq feet)800 – 1000
Available external static pressure in mm of Wg5
Type of BlowerBackward Curve belt driven fan
Blower motor connected load kW1.5 kW
Blower motor consumption load kW1.37 kW
10 FiltrationHDPE mesh of 60microns will be used behind the Louvers
Pump2 nos. submersible, 50watts single phase pump.
Dimensions W x L x H (mm)1100x1900x(1450+150)
Unit operating Weight in Kg350
Power supplyThree Phase 415V,50Hz.with connected load of 1.6kW.
ControllerMicrocontroller with corded remote controller (20 m wire length)
RH control availableYes manual RH control available
Additional features available on request.
Single phase power supplyAvailable on request
Variable frequency drive.
Auto drain system.
Differential pressure for air filters
Auto bleed-off facility
UV unit for tank water


Payback Period

TYPEIDECOOL4Air Conditioner
Capacity4000 CFM2 TON
Power1.5 kW2.0 Kw
Covered Area800 sqft800 sqft
Air Changes Per Hour3030
No. of Machine Required14
Total kW1.58
Electricity Unit Consumption per year (10 hrs, 300 days)4500 kw 24,000 kw
Total Electricity Cost (in Rs.)(Assuming Rate @ Rs 8/Unit)Rs. 36,000 /-Rs. 1,92,000 /-
Saving on Electricity Cost per year ( in Rs.)Rs. 1,56,000/-Nil
Running Cost Saving (%)81%NIL

Evaporative Cooling Types

Direct evaporative cooling (Single Stage Cooling)

Indirect evaporative cooling

With direct evaporative cooling, outside air is blown through a water-saturated medium (usually cellulose -Honeycomb cooling pads) and cooled by evaporation. The cooled air is circulated by a blower.

Direct evaporative cooler adds moisture to the air stream until the air stream is close to saturation. The dry bulb temperature* is reduced, while the wet bulb temperature** stays the same.

*dry bulb: Sensible air temperature (as measured by a Thermometer).
**wet bulb: The lowest air temperature achievable by evaporative Air Cooilng System.

In Indirect evaporative cooling Hot Air and water travel in different channels and do not come directly in contact with each other, hence the name Indirect Evaporative Cooling.

In IEC, warm primary air cools by losing its heat to a thin water film on the other side of a conducting surface. Another air stream called Secondary or Scavenging air moves upward through the falling water and evaporates this water, thereby, converting most of the sensible heat into latent heat, before it is exhausted to the outside. Thus, the primary air is cooled without coming in contact with the water stream. Hence, IEC reduces the dry bulb temperature, wet-bulb temperature, and the enthalpy of the primary air without adding any moisture to it.Indirect Evporative coolers are more efficient.

Indirect-direct evaporative cooling ( Two Stage Cooling )

In Indirect Evaporative cooling, the primary air is cooled without coming in contact with water. Hence in first stage air is cooled without adding any moisture to it and then cooled further in the second stage with the direct evaporative cooling process with extra reduction of 5 Degree c


Temperature reduction achievable using indirect Evaporative Cooling and direct evaporative cooling

First, calculate the dry bulb and wet bulb temperatures achievable with indirect evaporative cooling:
1. Temp drop achievable = (dry bulb – wet bulb ) x (efficiency of indirect module)
Example: (42 degrees C- 23.5degrees C) x .7 = 13 degreesC.

2. Achievable temp = dry bulb – temp drop achievable
Example: 42 degrees – 13 degrees = 29 degrees DB/19.5 degrees WB.

3. Starting DB: 42 degrees
Ending DB: 29 degrees

Then use the dry bulb/wet bulb values from step 3 to calculate the dry bulb/wet bulb temperatures achievable with direct evaporative cooling:
4. Temp drop achievable: (dry bulb – wet bulb ) x (efficiency of the media)
Example: (29 degrees – 19.5 degrees) x .9 = 8.6 degreesC.

5. Achievable temp = dry bulb – temp drop achievable
Example: 29 degrees – 8.6 degrees = 20.4 degrees DB/19.5 degrees WB.

6. Total temperature reduction using indirect/direct evaporative cooling:
Starting DB: 42 degrees C
Ending DB: 20.4 degrees C